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In 2009, the G20 countries pledged to phase-out fossil fuel subsidies1. Our original article 
highlighted that about 95% of subsidies go to consumers and two-thirds are in the 
Middle East, Russia and Latin America2. We also found the largest emission reductions 
from subsidy removal would occur in those three regions, where low oil prices provided a 
unique political opportunity and the reforms would harm fewer poor people. Erickson et 
al. argue that we downplay the impact of subsidy removal and the effect of subsidies for 
oil producers, such as the US’ intangible drilling cost (IDC) scheme. Here we show large 
variations in such schemes and estimate their impact to be within the range of the 
sensitivity analysis from our original article. The US IDC, may represent a unique 
political opportunity for producer subsidy reform, but reforming such schemes may not 
be effective in countries where they are applied in tandem with high taxes for oil 
production. 

We estimated emission reductions from subsidy removal would be between 2-8% and 3-15% of 
those required by 2030 to achieve the 1.5°C and 2°C targets. We called this “unexpectedly small” 
because it contrasts sweeping statements that subsidy removal would have “significant”3 effects 
and is “the missing link in the fight against climate change”4. Yet we agree with Erickson et al. 
that given the immensity of the climate challenge, these numbers are notable and certainly not an 
argument against subsidy reform.  

Erickson et al. estimate the size and effect of the US IDC scheme which allows accelerated 
depreciation of drilling costs, essentially tax deferrals for oil producers. Their approach is 
different from ours in how subsidies are defined and measured. In our original article, we used 
government inventories5–7 for our central estimate, because these are the very subsidies 
governments have pledged to remove. Erickson et al. consider any regulation which makes oil 
production more profitable a subsidy even if it does not involve net transfers from the 
government. This leads them to use data not from government inventories of subsidies but from 
analysing oil production economics. Thus, Erickson et al. analyse the hypothetical cash flow for 
800 US oil fields and calculate the effect of the IDC scheme on the break-even price (BEP) of 
individual projects – we’ll call this the “effective subsidy rate”. They then assess the global 
impact of similar schemes by assuming all oil producers worldwide benefit from the same 
effective subsidy rate as in the US.  

Global IAMs can greatly benefit from such data if they are parameterized for long-term global 
scenarios. The first set of parameters defines how accelerated depreciation affects the effective 
subsidy rate. This depends on a project’s BEP, discount rate, share of capital costs, the national 
tax regime, and the design of the accelerated depreciation scheme, all of which vary widely across 
countries and over time (Methods). To determine if Erickson et al.’s results would affect our 
original findings, we developed a discounted cash flow model to analyse the effective subsidy 
rate for the US IDC and for three additional countries with diverse institutional arrangements 
and geographies (Methods).  

In the case of the US, our model provides results similar to Erickson et al. for the 2016 case, 
however, the 2017 tax cut reduced the effect by about half and the recent fall in the cost of 
North American tight oil reduced it by another 30% (Table 1, Methods). The effective subsidy 
rates from accelerated depreciation schemes in Canada, Norway and Russia under a range of 
plausible BEPs are between two and ten times less than the US 2016 case. Using this range, we 
estimate the global effective subsidy rate from accelerated depreciation schemes to be $0.3-
$1.9/barrel [central: $1.0] (Table 1, Methods).  

The uncertainty in estimating production subsidies is well-known8,9. That is why in our original 
article, we included a sensitivity analysis where we scaled up oil production subsidies ten times 



3 

from those reported in government inventories based on an alternative estimate that included 
the US IDC scheme9. With the exception of the US-2016 case, these effective subsidy rates are 
all higher than the effective rates we estimate using the discounted cash-flow method (Table 1).  

The second step in Erickson et al.’s analysis is to estimate the effect of accelerated depreciation 
schemes on global oil consumption with a simple oil market model. Their calculation is sensitive 
to supply and demand elasticities which are highly uncertain (Methods). Erickson et al. use a 
single value for demand elasticity and a single value for supply elasticity for each oil price. A 
range of supply and demand elasticities from previous studies which used the same simple oil 
market model10,11 changes the results by almost by an order of magnitude even under the same 
effective subsidy rate (Table 1, Methods).  

In the sensitivity analysis from our original article, we estimated a 10-fold increase in oil 
production subsidies would increase oil extraction by 590 mln barrel/year (Table 1). The higher 
production subsidies (including all production subsidies – not just oil) would increase emission 
reductions from subsidy removal by 0.3 GtCO2/year in 2030 which is about 13% higher than 
that model’s main estimate, or about 1% of the emission reduction required by 2030 to achieve 
the 1.5°C or 2°C target (Methods).  

The final parameter which affects the effective subsidy rate is discount rates, which Erickson et 
al. assume varies between 10-20%. The upper end of this range is quite speculative since 
discount rates for the oil sector have generally varied between 9-11%12 (Methods). Table 1 shows 
our results using a discount rate of 10%, however our conclusions are robust over Erickson’s full 
range: a 20% discount rate increases the global effective subsidy rate to $0.4-2.7 [1.4]/barrel 
(Methods). 

This exchange highlights the importance of improving IAM parameters by incorporating new 
data. However, such data are more meaningful to global long-term IAMs if it is clear whether 
and how they are applicable beyond a single country at a single point in time. The generalizability 
of such data can be improved if they extend to a wider and more representative sample8,9, which 
IAMs can use as illustrated by the sensitivity analysis in our original article. Finally, these data 
should be relevant to the policy pledges they relate to as well as up-to-date and transparent about 
uncertainty and the policy environment. 

Although the effect of accelerated depreciation schemes can be incorporated in IAMs through 
adjusting the effective subsidy rate, we also agree with Erickson et al. that IAMs should better 
represent oil and gas infrastructure in the same way as they model the vintage structure of the 
power sector13. Another promising avenue would be to depict oil and gas investments using a 
real options ‘wait and see’ approach14 and to more realistically model price formation in the oil 
market15. These improvements may either dampen or amplify the effects of subsidies in IAMs, 
depending on whether infrastructural inertia, ‘wait and see’ behaviour, and strategic markets are 
more or less responsive to producer cost signals than in today’s IAMs. 

We also strongly agree with Erickson et al. that the social and political impacts of subsidy 
removal should always be examined in tandem with their emission impacts. However, it is time 
for social scientists to go beyond listing various negative effects of subsidies which are well 
documented in the literature and clearly extend beyond economics16–19 and instead identify 
opportunities and pathways for reform. That is why in our original article, we complemented 
energy and emissions analysis with a discussion of the socio-political impacts of subsidies to 
identify a political opportunity for reform in oil and gas exporting countries under low oil prices, 
where reducing consumption subsidies would affect fewer poor people, relieve squeezed 
government budgets and lead to the largest emission reductions.  
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A lesson from our original article is that the environmental and socio-political impacts of and 
obstacles to consumer subsidy reform vary between countries. This is almost definitely the case 
for producer subsidies as well. In the US, the original rationale (energy security and uncertainty 
in oil drilling) for the IDC subsidy is outdated, and it does little more than confer an unfair 
advantage on a polluting, privately-owned and profitable industry. Reforming this subsidy is 
complicated by the political clout of the industry, but at least its public benefits and endpoint are 
clear.  

However, such subsidies are much more difficult to identify, much less reform, in countries like 
Norway and Russia where oil producers pay very high taxes – over 70% on profits. These taxes 
are a major source of government revenue used to fund public services. Would reforming 
accelerated depreciation in these contexts also mean tax reductions for the industry? Would the 
endpoint be to bring the oil industry in line with the rest of the economy, something clearly not 
desirable either socially or environmentally? And if not, what would be the goal and the strategy 
for reform?  

Generalizing insights from the US worldwide is misleading both in terms of science and policy. 
Finding effective strategies to meet the Paris Agreement requires a detailed understanding of 
how oil production and other carbon-intensive sectors are embedded in national socio-political 
and economic contexts. 
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Table 1. The effect of oil production subsidies on producer costs and global oil 
consumption. Columns [A] and [B] contain estimates of all oil production subsidies from our 
original article2. In our sensitivity case the subsidy rate and its effect on oil production is 
higher than in under accelerated depreciation schemes [C]. For the US, the results for the 
2016 case are in italics including from Erickson et al. [D]. “Canada” is the “CAJAZ” (Canada, 
Japan, Australia and New Zealand) region whose oil production is dominated by Canada 
(over 98%). “MENA” refers to the Middle East and North Africa region. 

 IAM analysis of all producer 
subsidies in Jewell et al.2 (low oil 
price scenario) 

Discounted cash flow model of 
accelerated depreciation schemes  
(10% discount rate except for final row - 
see Methods) 

 Main Estimate of 
production 
subsidies from 
ref. 5 [A] 

Higher production 
subsidies from ref. 
8,9 [B] 

Variations in tax rates, 
capital cost, accelerated 
depreciation schemes, 
BEPs & elasticities (our 
analysis) [C] 

Erickson et al. 
[D] 

Effective production subsidy rate ($/barrel) 

US 0.6 2.4 
4.9 (2016 case) 
1.9 (2019 case) 

4.2 (2016 case) 
 

Other  
Regions 

Canada: 1.1 
Europe: 0.4 
Russia: 0 
MENA: 0 

Canada: 1.5 
Europe: 2.2 
Russia: 5.2 
MENA: 2.3 

Canada: 0.5 –1.4 [0.9] 
Norway: 0.9 – 2.0 [1.5] 
Russia: 0.9 – 2.1 [1.6] 
Saudi Arabia and Nigeria: 0 

Global 0.2 2.6 0.3 – 1.9 [1.0] 

Change in global oil extraction/consumption, mln barrels/yr (low oil price scenario) 

Change in extraction due to higher 
production subsidy estimate 

590  440 

Variation due to effective subsidy rate using elasticities in 
Erickson et al. and 10% discount rate 

30 – 200 [110] 

Variation due to elasticity assumptions using central 
effective subsidy rate and 10% discount rate 

20 – 140 [90] 

Variation due to discount rates using central effective 
subsidy rate for discount rates ranging from 7.5% – 20% 
central 15% (Methods) and elasticities in Erickson et al. 

90 – 150 [130] 440 – 770 [620] 
10% – 20% 
discount rate 

 


